Touching lives, improving life. $P \& G^{\mathsf{T}}$

Designing Safety Into Products

A continuous analysis of alternatives

Mark Lafranconi Toxicologist

April 11, 2012

- Fundamentals
- How is this applied at P&G?
- Examples

P&G's Business Scope

Approx 350 brands reaching over 4 billion consumers

Household Care

Fabric Care, Home Care, P&G Professional, Baby Care, Family Care, Personal Power (batteries), P&G Chemicals

Beauty & Grooming

Female Beauty, Male Grooming, Prestige, Braun, Salon Professional,

Health & Well Being

Personal Health Care, Pet Care, Snacks, Oral Care, Feminine Care

Our policy is to ensure that such products are safe for both our consumers and the environment.

An ingredient is not safe or unsafe

 It's the use of an ingredient that can be judged as safe or unsafe

Goal of Safety Assessment

SAFE RANGE	SAFETY MARGIN: TYPICALLY 100X – 1000X	

Amount used <<	Amount that can cause harm
Exposure •Route •Duration •Amount •Other sources •Unintended exposures	<u>Hazard & Dose Response</u> •Endpoints •Dose-Response

$$MOS = \frac{B_{RV}}{E_{xp}}$$

Routes of exposure

Different uses may result in different effects

Exposure Tiered Approach

Tiered approach -Increasing precision

P&G CONFIDENTIAL

Consumer Exposure Assessment

How is data obtained to assess exposure?

- Habits & Practices data
 - Consumer or laboratory testing to evaluate use and/or consumption
 - Frequency of use
 - Quantity of product used
 - How product is used
 - Identify sub-populations
 - Simulated use sampling
- Product surveillance
 - population data
 - Unintended use scenarios
- Externally recommended/validated exposure assumptions (e.g., EU TGD, EPA Exposure Factors Handbook, SDA, CTFA/COLIPA etc.)
- Work with Industry partners to publish large Habits & Practices datasets

Multiple sources

Deterministic

 $Ag_{ex} = \sum_{1}^{x} prod_x(conc_x)$

Probabilistic

 $Ag_{ex} = Prob \left[(prod_1(conc_1) + (prod_2(conc_2) + ...) \right]$

Paraben

Preservative

Propyl paraben CAS# 94-13-3

Methyl paraben CAS# 99-76-3

Ethyl paraben CAS# 120-47-8

Paraben

Estimate µg/kg/day

Hazard: What happens and at what level?

Doseresponse

Dose-response

Possible Effects

- Cancer
- Allergies
- •Repeat Dose (target organ toxicity)
- •Reproductive & Developmental toxicity

•Irritation (ocular, dermal, pulmonary) •Respiratory effects Photo-mediated effects Physical hazards

Existing information

Connection with external DB

Substructure searching

- Genotoxicity (19,300)
- Carcinogenicity (15,800)
- Skin Sensitization (9,400)
- Skin Irritation (10,400)
- Reproductive/Developmental Toxicity (11,300)
- Subchronic/Chronic Toxicity (15,100)
- Acute Toxicity (68,500)

External Data Sources:

BIBRA*, Cal Prop 65*, CTFA*, HERA*, HPV*, OECD*, IPCS*, NICNAS*, RIFM/FEMA*, SCCP*, WHO/JECFA*, SciFinder, ToxNet, ATSDR, CPDB, ECETOC, ECB, IARC , Thompson/MicroMedix, NTP, RTECS/NIOSH, Scopus, TSCATS, others

Making a safety decision

$$MOS = \frac{RfD}{E_{xp}}$$

Endpoint	NOAEL	RfD	E _{xp}	MOS
Acute Oral	> 5 g/kg	50 mg/kg	0.001 mg/kg	1,000
91 day feeding	170 mg/kg	0.170 mg/kg		
Dermal Irrit.	36,000 μg/cm ²	360 μg/cm ²	1.2 μg/cm ²	300
Mutagenicity	Neg	-	-	-
Repro	Neg	-	-	-
Allergy – derm	Neg	-	-	
Pulmonary Irrit	106,600 μg/g	1066 μg/g	2110 μg/g 70 μg/g 5 μg/g	0.5 15.2 213.2

Product Development Process

Example – Compact Liquid Laundry

Safety Assessment

176 Publications56 Supplier studies33 Internal studies

MOS 165 - 2,500

20 Billion wash loads/year

Formula Example: Premium Compact Liquid Laundry Detergent					
Alcoholethoxy sulfate	20.1%	Diquaternium ethoxy sulfate	1.6%		
Linear alkylbenzene sulfonate	2.7%	Polyethylene glycol-polyvinyl acetate	0.4%		
Alkyl sulfate	6.5%	Polyethyleneimine propoxyethoxylate	1.0%		
Laureth-9	0.8%	Diethylenetriamine pentaacetic acid	0.4%		
Citric acid	3.8%	Disodium diaminostilbene disulfonate	0.01%		
C12-18 fatty acids	2.0%	Ethanol	2.6%		
Protease (stock)	1.5%	Propylene Glycol	4.6%		
Amylase (stock)	0.3%	Diethylene Glycol	3.0%		
Mannanase (stock)	0.1%	Polyethylene glycol	0.2%		
Pectate Lyase (stock)	0.1%	Monoethanolamine	2.7%		
Xyloglucanase (stock)	0.3%	Dye	0.01%		
Borax	3.0%	Perfume	0.5%		
Calcium formate	0.1%	NaOH	to pH 8.3		
Sodium formate	0.1%	Water	to 100%		

Alternatives decision

Profile	Surfactant	Protease
Performance	Good	Breakthrough
Biodegradation	Rapid	Rapid
Aquatic toxicity	Moderate	Mild
Bioaccumulation	Low	None
Renewable	Limited	Yes
Skin irritant	Mild	Mild
Eye Irritant	Moderate	Mild
Acute Tox	Mild	Mild
Pulmonary irritation	Moderate	Mild
Allergenicity	Negative	Туре І

Decision to use proteases in laundry

Concluded this use is safe

Decision on using proteases in body scrub

- Enhanced defoliation
- Milder to the skin
- More uniform effects

Decision to use proteases in body scrub

Concluded this use is not safe

Importance of "Informed Substitution"

Decision Elements

- Technological feasibility
- Does it improve health and environmental safety
- How does it impact cost, performance, economic/social considerations
- Is it sustainable
- What are the trade offs
- Consumer preference

Thanks for listening. Questions?