Household Detergents

Don Versteeg Ecotoxicologist, Product Steward The Procter & Gamble Company

AGENDA

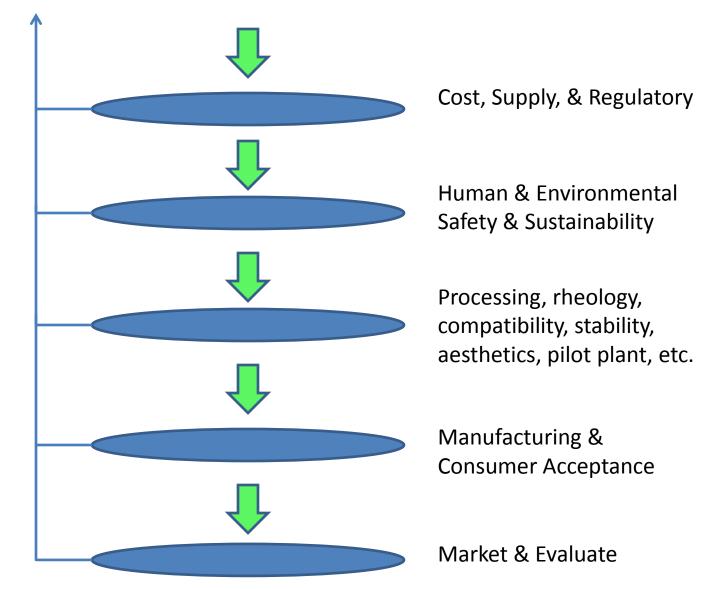
- Industry & the TAAG
- Finding New Ingredients
- Green Chemicals/Ingredients
- Hazard vs. Risk
- Case Studies
- Tools: AA, Hazard, Risk, & LCA
- Principles

Why is Industry Involved with the TAAG?

 > 60 years of experience in replacing one ingredient, with another without compromising on safety

- The search for new ingredients, with an acceptable safety pedigree is alternatives analysis
- Similar interest: safer, more sustainable products that improve the lives of consumers now and for generations to come. This includes workers, and all impacts through the lifecycle.

'Alternatives Assessment' is a process for identifying and comparing potential chemical and non-chemical alternatives that can be used as substitutes to replace chemicals or technologies of high concern


Identifying New Ingredients

• Suppliers

Find supplier knowledgeable in the chemical space

- Brute force approach
 - Focused on appropriate chemistries
 - Test product with new ingredient
- Modeling approach
 - Define the property needed molecular descriptors
 - Search for ingredients optimized for those descriptors
 - Synthesize molecule & test

List of Alternative Chemicals

Availability of Green Chemicals

• Short list of green chemicals

 Many are conventional chemicals with improvements in supply

- Green Chemistry Principles focus on chemical production
- Evaluate all chemicals for 'greenness'
 Criteria & tradeoffs?

Green Detergent	Regular Detergent
Sodium lauryl sulfate	Yes
Laureth-6	Similar
Sodium citrate	Yes
Glycerin	No
Oleic acid	Yes
Sodium hydroxide	Yes
Boric acid	Yes
Calcium chloride	Yes
Fragrance	Yes
Enzymes: protease, amylase and mannanase	Yes
Preservatives: methylisothiazolinone & benzisothiazolinone	Yes

Green detergent contains more naturally based materials.

Regular detergent contained additional ingredients.

Tiers in Environmental

- Screening: Some hazards indicated probability of success is low (genotoxicity, LC50< 100ppb). These may be showstoppers.
- Tier 1: Do I have a good chemical analog or good QSARs to support environmental fate and effects predictions?

Jncertainty

- If no, test
- If yes, evaluate safety
 - If safe, stop, use material
 - If significant risk, stop, do not use material
 - If safety not assured, continue with next tier
- Tier 2: Conduct basic acute toxicity and fate tests, evaluate safety
 - If safe, stop, use material
 - If significant risk, stop, do not use material
 - If safety not assured, continue with next tier
- Tier 3: ...

Chemicals Eliminated

- High volume surfactants due to risk
- High volume fragrance ingredients due to PBT
- Fluorinated organics due to atmospheric concerns
- Organometallic compounds due to endocrine and toxicity concerns
- Etc.

Historical alternatives efforts

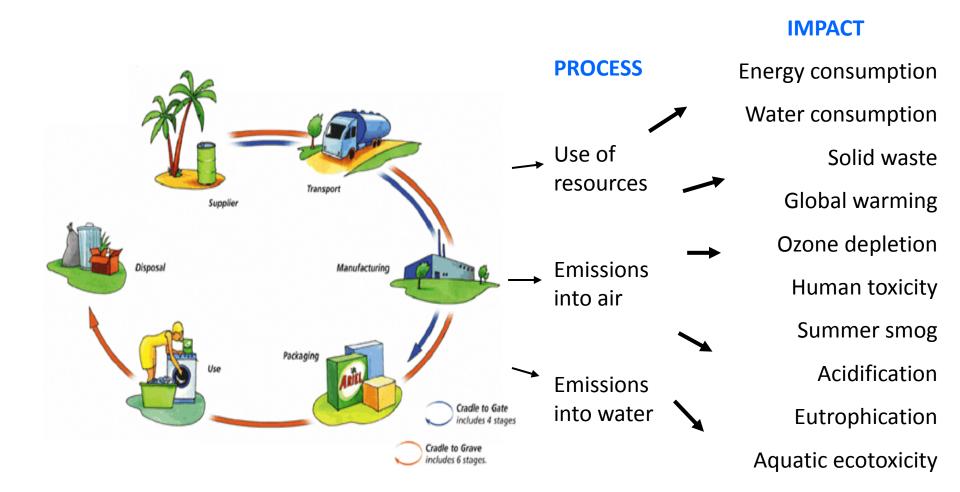
Old	New	When	Trade Off
ABS	LAS	1960	↑ toxic
APE	Alcohol ethoxylates	1970	
Phosphate	DTPA	1970	✓ degradable, ↑ toxic
DTDMAC	Ester-Quat	1995	↑ toxic
MTBE	Ethanol	2000	↑ food prices

Trade-Offs - Preservative/Antimicrobials

Literature Search Results

Compound	Toxicity	Toxicity & Daphnia	River	Endocrine
Current	488	34	400	368
Alt 1	755	6	44	55
Alt 2	279	0	6	29
Alt 3	49	1	7	3
Alt 4	30	0	1	3
Alt 5	97	8	57	75
Alt 6	77	2	2	8

If new chemical needed, then 3-6 years for approval.


Other experience with AA

- Chelators
 - Chemicals that bind calcium & metals allowing surfactants to work better
 - >35 year search
 - Several new materials developed and commercialized
 - None that adequately replace EDTA, DTPA, phosphates
- Enzyme stabilizers
 - >5 year search
 - PMN needed (multiple years)
 - Capacity


ADW: Nil P Technology Strategy

Area of Consumer Impact	Nil P Technologies
Tough Food Cleaning	4 – 5 materials
Shine	2 materials
Metal Care	2 materials
Stain Removal	2 materials
Gel product aesthetics	1 material

LCA- the 1 slide explanation

Typical LCA Output

No Risk!

Comparison of metrics

How do we compare 1 gram of solid waste with 1 gram of CO_2 or 1 mg of phosphate?

How much additional toxicity will we allow to reduce water use by 10 liters per kg of product?

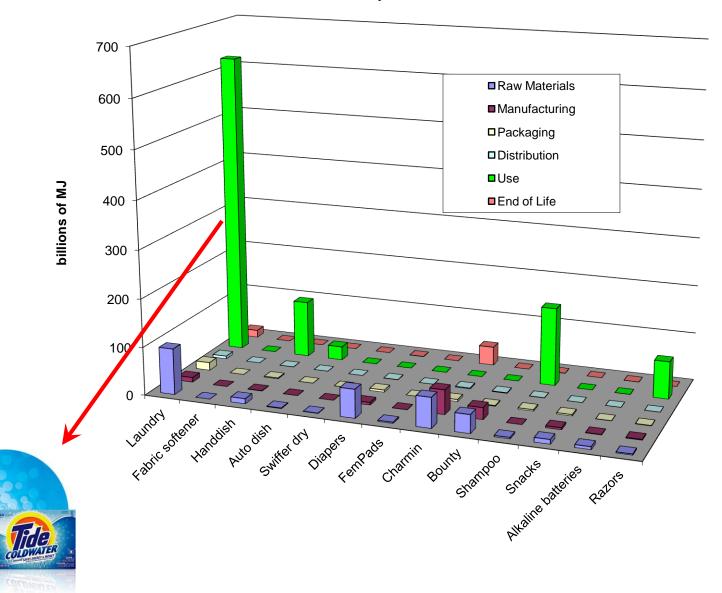
on	Impact Factor	Units	Product 1	Product 2
	Energy total	MJ primary	3.2	2.6
	Water consumption	liter	1.8	1.8
	IPCC GWP 100a	kg CO2 eq	0.15	0.13
	Smog	g NOx eq	0.00039	0.00032
	Ozone depletion	kg CFC-11 eq	1.0E-08	9.3E-09
	Human toxicity	kg toluene eq	2.97	3.28
	Respiratory effects	kg PM2.5 eq	0.00021	0.00018
	Eutrophication	g N eq	0.00016	0.00049
	Ecotoxicity	kg 2,4-D eq	0.22	0.24

Normalization – how important is each factor?

- Difficult to compare an extra 1,000 liters of water used with a reduction of 0.3 kg of air emissions
- We know how much water is used in a region by each average consumer
- We know how much air emissions are released in the region by each average consumer
- Use this information to Normalize the Impacts
 - Convert into people equivalents
 - i.e., amount of that factor used or generated by an average person per year

Normalization – annual product use

Impact Factor	Product 1	Product 2	People Equivalents*
Energy total	3.2	2.6	-40,000
IPCC GWP 100a	0.15	0.13	-32,000
Smog	0.00039	0.00036	-3,000
Ozone depletion	1.0E-08	9.3E-09	-88
Human Toxicity	2.97	3.28	+16,000
Respiratory effects	0.00021	0.00018	-250
Eutrophication	0.00016	0.00049	+22
Ecotoxicity	0.22	0.40	+3,200

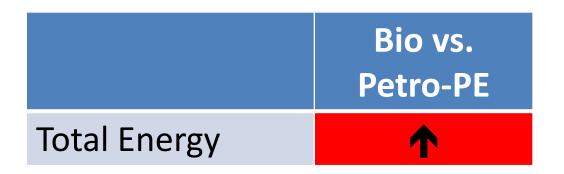

Energy Usage from Life Cycle Perspective

700 Raw Materials 600 Manufacturing Packaging 500 Distribution Use billions of MJ 400 End of Life 300 200 100 Laundhy softenet 0 Handdish Diapers pads Autodish Swifferdry Snacks batteries Charmin Bounty Shampoo Ralors

W Europe & North America

Energy Usage from Life Cycle Perspective

W Europe & North America



Warm vs. Cold Water Surfactant

Property	Warm Surf	Cold Surf
Persistence	Ready	Ready
Bioaccumulation	Low	Moderate
Toxicity (aquatic)	Moderate	↑ toxic

- The warm water surfactant wins in a hazard assessment
- But, both compounds are **safe** based on risk assessment and the cold water surfactant is needed for cold water solubility = energy & GHG savings

- Petroleum (CH2) \rightarrow Plastic (CH₂)_x - Ψ Energy

	Bio vs. Petro-PE
Total Energy	1
Fossil Energy	$\mathbf{\Psi}$
GHG Emission	\mathbf{V}

	Bio vs. Petro-PE	
Total Energy	1	
Fossil Energy	$\mathbf{\Psi}$	
GHG Emission	$\mathbf{\Psi}$	
Land Occupation	1	Site & resin
Eutrophication	^	specific!
Terrestrial Acidification	^	

Tools

- Alternatives Analysis identifies list of potential ingredients
 - Describes entire process of analyzing information & making a decision
 - aka Product Development
- Hazard Assessment initial screening of alternatives
 - Screening tests, related materials, structural alerts,
 - Narrows list of alternatives no absolute rules
- Risk Assessment defines safety
 - Definitive tests needed
 - Select list of acceptable alternatives
- LCA defines impacts through the lifecycle
 - Not good for risk (not temporally or spatially explicit)
 - Identifies sustainability issues & opportunities

Principles

- Do no harm
 - Carefully select materials to replace
- Involve experts
 - Retired R&D & Process Engineers?
- Flexibility
 - Toys, electronics, cars, pesticides, cleaning products
- Include the life-cycle
 - Establish rules for trade-offs

Sustainable Innovation

Versteeg.dj@pg.com

Touching lives, improving life. $P\&G^{m}$