Representing the Makers of the World's Favorite Food, Beverage and Consumer Products

Product R\&D:

Innovation, Trade-offs and
 Avoiding Unintended Consequences

- Bill Greggs -

www.gmaonline.org

Innovation

\AA Innovation is:

- Improving products
- Improving life

A Innovation means substitution

- Of an ingredient or a component
- Of multiple ingredients or components
- Of the entire product with a different product
\AA Classic examples in Lighting
- Oil/gas lanterns \rightarrow Incandescent light bulb
- Carbon filament \rightarrow Tungsten filament
- Vacuum \rightarrow Inert gas
- Incandescent \rightarrow Compact Fluorescent \rightarrow LED

Lighting Innovation

What does innovation look like?

GMA

What does innovation look like?

Product R\&D Process - Continuous Improvement

What does innovation look like?

What does innovation look like?

Genius is 1\% inspiration and 99\% perspiration.

Where is the Product R\&D perspiration ???

Multi-Factorial Evaluation Matrix

Companies consider ALL of these factors within the Product R\&D process

(i) Safety (human and environmental)

- Public Health Impacts, incl. sensitive subpopulations
- Environmental Impacts

Water quality impacts
Air emissions
GHG emissions
Waste/End-of-Life Disposal

- Toxicological endpoints
- Physicochemical properties

(ii) Performance and Value

- Product function/performance (to include compatibility)
- Useful Life
- Economic impact
- Consumer Acceptance
(iii) Lifecycle/Resource utilization
- Material/Resource Consumption
- Water conservation
- Energy inputs (Production, In-use, and transportation)
- Energy efficiency

Without data,
 how can we reach any definite conclusions?

- Thomas Edison

(iv) Other

- Availability/sourcing
- Manufacturing capability
- Regulatory compliance
- Stakeholder communication
- ...

Multi-Factorial Evaluation Matrix

Evaluation Elements	
Safety	Public Health
	- Sensitive Subp.
	Environmental - Water - Air - GHG - Waste/End Life
Performance Value	Product function / performance
	Useful Life
	Economic Impact
	Consumer Acceptance
Lifecycle Resource Utilization	Material/Resource Consumption
	Water conservation
	Energy inputs (production, in-use, transportation)
	Energy Efficiency
Other	Availability/sourcing
	Manufacturing capability
	Regulatory compliance
	...

Use the Matrix in each Product R\&D Process Step

Screening Alternatives

Evaluation Elements		Baseline	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5
Safety	Public Health - Sensitive Subp.						
	Environmental - Water - Air - GHG - Waste/End Life						
Performance Value	Product function / performance						
	Useful Life						
	Economic Impact						
	Consumer Acceptance						
Lifecycle - Resource Utilization	Material/Resource Consumption						
	Water conservation						
	Energy inputs (production, in-use, transportation)						
	Energy Efficiency						
Other	Availability/sourcing						
	Manufacturing capability						
	Regulatory compliance						
	...						

Screening Alternatives

(Narrowing to a Few Alternatives for Assessment)

Evaluation Elements		Baseline	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5
Safety	Public Health - Sensitive Subp.						
	Environmental - Water - Air - GHG - Waste/End Life						
Performance Value	Product function / performance						
	Useful Life						
	Economic Impact						
	Consumer Acceptance						
Lifecycle Resource Utilization	Material/Resource Consumption						
	Water conservation						
	Energy inputs (production, in-use, transportation)						
	Energy Efficiency						
Other	Availability/sourcing						
	Manufacturing capability						
	Regulatory compliance						
	...						

RELEVANT Parameters
 Selection for
 Assessment
 Selection of RELEVANT Parameters for Assessment

Evaluation Elements		Baseline	Alternative 1	Alternative 4	Alternative 5
Safety	Public Health - Sensitive Subp.				
	Environmental - Water - Air - GHG - Waste/End Life				
Performance Value	Product function / performance				
	Useful Life				
	Economic Impact				
	Consumer Acceptance				
Lifecycle Resource Utilization	Material/Resource Consumption				
	Water conservation				
	Energy inputs (production, in-use, transportation)				
	Energy Efficiency				
Other	Availability/sourcing				
	Manufacturing capability				
	Regulatory compliance				
	...				

RELEVANT
 Parameters

Selection for
Assessment

Selection of RELEVANT Parameters for Assessment

Evaluation Elements		Baseline	Alternative 1	Alternative 4	Alternative 5
Safety	Public Health - Sensitive Subp.				
	Environmental - Water - Air - GHG - Waste/End Life				
Performance Value	Product function / performance				
	Useful Life				
	Economic Impact				
	Consumer Acceptance				
Lifecycle - Resource Utilization	Material/Resource Consumption				
	Water conservation				
	Energy inputs (production, in-use, transportation)				
	Energy Efficiency				
Other	Availability/sourcing				
	Manufacturing capability				
	Regulatory compliance				
	...				

Evaluation

Comparative Assessment

Evaluation Elements					Baseline
Safety	Public Health $-\quad$ Sensitive Subp.			Alternative 1	Alternative 4

Without data,

how can we reach any definite conclusions?

Decision-Making Trade-Offs

What we all hope for...

Evaluation Elements		Baseline	Alternative 1	Alternative 4	Alternative 5
Safety	Public Health - Sensitive Subp.				
	Environmental - Water - Air - GHG - Waste/End Life				
Performance Value	Product function / performance				
	Economic Impact				
	Consumer Acceptance				
Lifecycle Resource Utilization	Material/Resource Consumption				
	Water conservation				
	Energy Efficiency				
Other	Manufacturing capability				
	Regulatory compliance				
	...				

Decision-Making Trade-Offs

The real world ...

Evaluation Elements		Baseline	Alternative 1	Alternative 4	Alternative 5
Safety	Public Health - Sensitive Subp.				
	Environmental - Water - Air - GHG - Waste/End Life				
Performance Value	Product function / performance				
	Economic Impact				
	Consumer Acceptance				
Lifecycle - Resource Utilization	Material/Resource Consumption				
	Water conservation				
	Energy Efficiency				
Other	Manufacturing capability				
	Regulatory compliance				
	...				

This is a massive simplification...

Decision-Making Trade-Offs

A Decision Principles

- Safe for humans, environment
- Meet consumer needs
- Comply with all regulations
- No significant lifecycle impacts

A Decision rules
Fixed set of rules?
Fixed criteria?
Fixed framework?

Unintended Consequences

\AA Unexpected Trade-Offs

- Product R\&D gone wrong?
- Overlooked details?
- III-considered political mandates?
- Newly developed criteria?
\AA Examples of Trade-Offs

Just because something doesn't do what you planned doesn't mean it's useless.

- Thomas Edison
- Fuel: Tetraethyl lead \rightarrow Methyl tert-butyl ether \rightarrow Ethanol
- Refrigerants: Anhydrous ammonia \rightarrow CFC R-12 \rightarrow HCFC R-22 \rightarrow R-410A
- Textiles: Flammable materials \rightarrow Fire retardancy standards
- Solvents: Methylene chloride \rightarrow 1-bromopropane
- Polio Vaccines: Injection \rightarrow Oral
- Lighting: Incandescent bulb \rightarrow Compact fluorescent \rightarrow LED
- Insecticides: Arsenicals \rightarrow DDT \rightarrow Organophosphates

How do we minimize the potential for Unintended Consequences?

Genius is 1% inspiration and 99% perspiration.

Accordingly, a 'genius' is often merely a talented person who has done all of his or her homework.

- Thomas Edison, 1903

Do all of the Homework!

How do we minimize the potential for Unintended Consequences?

Rigorous use of the Product R\&D Process and Multi-Factorial Evaluation Matrix !

www.gmaonline.org

Thank You!

Bill Greggs

bgreggs@gmail.com
(513) 315-4155

