EPA United States Environmental Protection Agency

Design for the Environment Partnership to Evaluate Alternatives to Bisphenol A in Thermal Paper: Results

Cal Baier-Anderson, PhD

Toxicologist

Risk Assessment Division (formerly, Design for the Environment)

Office of Pollution Prevention and Toxics

The views are those of the authors and do not represent Agency policy or endorsement.

DfE Voluntary Partnership Programs

• Safer Choice Labeling Program:

Label innovative formulations made with lower hazard ingredients with the Safer Choice logo as incentive.

• Chemical Alternatives Assessment:

Characterize environmental and human health impacts of chemicals & alternatives; promote informed substitution.

Alternatives Assessment Program

• Chemical alternatives assessments:

- Identify and evaluate alternatives.
- DfE focus is on comparative hazard assessment, taking into consideration exposure and life cycle issues.
- Involve stakeholders from across the spectrum of interested parties.

• The outcome of an alternatives assessment:

- Provides the best information on hazard from existing data (e.g., toxicity testing, analogs, and models).
 - Based on EPA New Chemicals Program approaches.
 - Does not rank (benchmark) chemicals.
- Helps minimize the potential for unintended consequences by reducing the likelihood of moving to alternatives that could pose a concern.
- Can be integrated into a company's performance and cost analysis.

DfE Criteria for Safer Chemicals

- Human Health Traits:
 - Carcinogenicity
 - Mutagenicity/Genotoxicity
 - Acute mammalian toxicity
 - Respiratory & Skin Sensitization
 - Eye & Skin Irritation/Corrosivity
 - Reproductive and Developmental Toxicity
 - Repeated Dose Toxicity
 - Neurotoxicity
 - Immunotoxicity
 - Endocrine activity

- Environmental Traits
 - Acute aquatic toxicity
 - Chronic aquatic toxicity
 - Persistence
 - Bioaccumulation
 - Framework allows for additional criteria, when relevant and available:
 - Physical hazards
 - Ecosystem impacts

Why did DfE conduct an alternatives assessment?

- EPA action plan (March 2010) for bisphenol A (BPA) under Existing Chemical Management Program identified potential concerns.
- DfE assessed and compared potential hazards associated with BPA and functional alternatives.
- Report will help product manufacturers reduce the likelihood of unintended consequences of using substitutes for BPA.

http://www2.epa.gov/saferchoice/partnership-evaluate-alternatives-bisphenol-thermal-paper

DfE's BPA alternatives assessment partnership

- Partnership stakeholders helped identify alternatives to BPA in thermal paper and associated information.
- DfE evaluated the hazards associated with BPA and the functional alternatives.
 - Prepared human health and environmental profiles for each chemical based on:
 - Review of literature in the public domain,
 - Structure-activity relationship modeling, and
 - Proprietary information shared by stakeholders.

http://www2.epa.gov/saferchoice/partnership-evaluate-alternatives-bisphenol-thermal-paper

Background on BPA

- Thermal printing: BPA functions as a developer, reacts with white/colorless dyes in presence of heat, converting to a dark color.
- Unreacted BPA has been reported in thermal paper.
- Workers in certain occupations (e.g., cashiers and restaurant servers) may be at greater risk of exposure.
- Children may experience greater exposures due to hand-tomouth behavior and mouthing of inappropriate object.
- Recycling of thermal paper may contribute residual BPA to the supply of recycled paper and may be an additional source of release to the environment.

http://www2.epa.gov/saferchoice/partnership-evaluate-alternatives-bisphenol-thermal-paper

Office of Pollution Prevention and Toxics

Hazard Criteria

Helps organize toxicological information to compare chemicals based on hazard profile.

Needed for Comparison:

- Data or models to evaluate endpoints.
- Transparent framework for comparison.
- Method to communicate results.

*⊜*EPA

See: <u>http://www2.epa.gov/saferchoice/alternative</u> s-assessment-criteria-hazard-evaluation

Human Health Effects Acute Mammalian Toxicity Very High High Low Oral LD50 (mg/kg) > 50 - 300 \$ 50 > 300 - 2000 > 2000 Dermal L050 (ing/kg) \$ 200 > 200 - 1000 > 1000 - 2000 > 2000 Inhalation LC50 \$2 > 2.10 > 10 - 20 > 20 vapor/gas) (mg/L) Inhalation LC50 \$0.5 >10-5 >5 >05-10 dust/mist/tume1 (mo/L) Carcinogenicity Very High High Low Limited or marginal evidence of Known or presumed human suspected human carcinogen Negative studies or robust carcinogen (GHS Category carcinogenicity in animals (and GHS Category 2) mechanism-based SAR 1A and 1B) inadequate evidence in humans) Mutagenicity/Genotoxicity Moderate Very High High Low 3HS Category 1A or 1B GHS Category 2: Substances Substances known to which cause concern for nduce heritable mutations umans owing to the Germ cell mutagenicity or to be regarded as if they cossibility that they may induce heritable mutations nduce heritable mutations in in the germ cells of humans the germ cells of humans Evidence of mutagenicity Negative for chromosomal supported by positive results in in who OR in wwo somatic cells or no structural alerts aberrations and gene mutations of humans or animals Evidence of mutapenicity Mutagenicity and Genotoxicity in supported by positive results Somatic Cells in in vitro AND in vivo somatic cells and/or eerm cells of humans or animals Moderate **Reproductive Toxicity** High Low Very Low Oral (mg/kg/day) < 50 50 - 250 > 250 - 1000 1000 Dermal (mg/kg/day) < 100 100 - 500 > 500 - 2000 2000 inhalation (vapor, gas, mg/L/day) <1 1-25 > 2.5 - 20 20 nhalation (dust/mist/fume, mp/L/day) < 0.1 0.1 - 0.5 > 0.5 - 5 . **Developmental Toxicity** Moderate High Low Very Low Oral (mg/kg/day) < 50 50 - 250 > 250 1000 Dermal (mg/kg/day) < 100 100 - 500 > 500 2000 Inhalation (vapor, gas, mg/L/day) 1-25 <1 >25 20 nhalation (dustimist/fume, mp/L/day) < 0.1 01-05 > 0.5 5 Neurotoxicity High Moderate Low (90 day study) Oral (mg/kg-bw/day) < 10 10 - 100 > 100 Dermal (mg/kg-bw/day) 20-200 < 20 > 200 Inhalation (vapor/gas) (mg/L/6h/day) < 0.2 02-10 >10 Inhalation (dust/mist/fume) < 0.62 0.02-0.2 >0.2 mg/L/6h/day) Repeated Dose Toxicity Moderate High Low (90-day study) Oral (mg/kg-bw/day) 10 - 100 > 100 < 10 Dermal (mg/kg-hw/day) < 20 20-200 > 200 Inhalation (vapor/gas) (mg/L/5h/day) < 0.2 02-10 >10 Inhalation (dustimistitume) < 0.62 0.02+0.2 >0.2 mp/L/6h/day)

Environmental Toxicity and Fate												
Aquatic Toxicity	Very High	High	Moderate	Low								
Acute Aquatic Toxicity (LC50 or EC50) (mg/L)	< 1.0	1 - 10	> 10 - 100	> 100								
Chronic Aquatic Toxicity (LOEC) (mg/L)	< 0.1	0.1 - 1	> 1 - 10	> 10								
Environmental Persistence	Very High	High	Moderate	Low	Very Low							
Persistence in water, soil or sediment	Half-life > 180 days or recalcitrant	Half life of 60 – 180 døys	Half-life < 60 but ≥ 16 days	Half-life < 16 days OR passes Ready Biodegradability test not including the 10-day window.	Passes Ready Biodegradability test with 10-day window.							
Persistence in air (half-life days)	For this endpoint, H	igh/Moderate/Low etc. charact	erizations will not apply. A qualita	tive assessment of available data	will be prepared.							
Bioaccumulation (BAF / BCF)	Very High	High	Moderate	Low								
BCF/BAF	> 5,000	6,000 - 1,000	<1,000 - 100	< 100								
Log BCF/BAF	>3.7	3.7-3	<3-2	<2								

Results: BPA Alternatives, BPA-like

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. ⁸ Based on analogy to experimental data for a structurally similar compound.

				Human Health Effects							Aqu Tox	atic icity	Environmental Fate				
Structure	Chemical (for TSCA inventory name and relevant trade names see the individual profiles in Section 4.8)	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
			Bisph	enol A	and Ph	enolic .	Altern	ative	s	-	-		1				
×0+0~	Bisphenol A 2,2-bis(p-hydroxyphenyl)propane	80-05-7	L	Μ	L	М	H	М	Μ	М		м	М	H	H	VL	L
°0.0°	Bisphenol F Bis(4-hydroxyphenyl)methane	620-92-8	L	М	L	M [₿]	Ħ	M	H	L		VH	M⁵	М	H	L	L
-0+0-	Bisphenol C 2,2'-Bis(4-hydroxy-3- methylphenyl)propane	79-97-0	L	М	м	M [₿]	H [§]	М	M [‡]	M [§]		H [§]	M [₿]	н	Н	М	М
.ão.	MBHA Methyl bis(4- hydroxyphenyl)acetate	5129-00-0	L	М	L	M [₿]	H [§]	М	M [‡]	L		M [≬]	M [‡]	Н	Н	М	L
ფად	BisOPP-A 4,4'-Isopropyllidenebis(2- phenylphenol)	24038-68-4	L	М	L§	M [§]	H [§]	М	M [₿]	M⁵		M⁵	M⁵	L	H	H	М
-040-	Bisphenol AP 4,4'-(1-Phenylethylidene)bisphenol	1571-75-1	L§	М	L§	M §	₽§	M	M⁵	M [§]		M [₿]	M⁵	H	H	H	М
	Substituted phenolic compound, PROPRIETARY #1		L	М	L	M [₿]	Ħ⁰	M	M [₿]	M [₿]		M [₿]	M⁵	H	М	М	L
	Substituted phenolic compound, PROPRIETARY #2		L	М	L	M [₿]	Ħ	M	M [₿]	M [§]		M⁵	M⁵	H	H	H	H
oro.	PHBB Benzyl 4-hydroxybenzoate	94-18-8	L	М	М	L	М	M	L	M [§]		VL	VL	H	H	L§	L

Results: BPA Alternatives, BPS-like

*⇔*EPA

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH)																	
were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment.																	
§ Based on analogy to experimental data for a structurally similar compound.																	
														Aqu	atic	Envir	onmental
						Hu	man l	lealti	1 Effec	ts				Tox	icity	1	fate
Structure	Chemical (for TSCA inventory name and relevant trade names see the individual profiles in Section 4.8)	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
Hydroxyphenyl Sulfone Alternatives																	
0:0	Bisphenol S 4-Hydroxyphenyl sulfone	80-09-1	L	М	М	М	М	М	н	L		L	L	М	М	М	L
с ^х б	2,4-BPS 2,4'-Bis(hydroxyphenyl)sulfone	5397-34-2	L	М	М	M⁵	M [§]	М	H [§]	L		L	L	М	H	М	L
złą:	TGSA Bis-(3-allyl-4-hydroxyphenyl) sulfone	41481-66-7	L	М	L	M	M [₿]	М	н	М	М	L	VL	н	м	H	L
	BPS-MAE Phenol,4-[[4-(2-propen-1- yloxy)phenyl]sulfonyl]-	97042-18-7	L	M [§]	м	M	M [₿]	М	L	L	М	L	VL	н	H	H	L
0-040-	BPS-MPE 4-Hydroxy-4'- benzyloxydiphenylsulfone	63134-33-8	L	М	M [§]	M [₿]	M [₿]	М	H [§]	L		L	L	VH	H	H	М
~ ~ ~	D-8 4-Hydroxyphenyl 4-isoprooxyphenylsulfone	95235-30-6	L	М	L	M [§]	M [§]	М	М	L		L§	L	н	H	М	М

Results: BPA Alternatives, Other

This table only contains information regarding the inherent hazards of the chemicals evaluated. Evaluation of risk considers both the hazard and exposure. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment. ^o The highest hazard designation of a representative component of the oligomeric mixture with MWs <1,000.

The highest hazard designation of an epresentative component of the origonient t The highest hazard designation of any of the oligomers with MW <1,000</p>

§ Based on analogy to experimental data for a structurally similar compound.

			Human Health Effects							Aq Tos	uatic cicity	Environmental Fate					
Structure	Chemical (for TSCA inventory name and relevant trade names see the individual profiles in Section 4.8)	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductive	Developm ental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
		0	ligom	eric an	d Polyn	neric A	lterns	tives								-	
-୦୫୦-୦୫୦-୧	D-90 Phenol, 4,4'-sulfonylbis-, polymer with 1,1'-oxybis[2-chloroethane]	191680-83-8	L	М	L	L	L	М	L	L		М	VL	L‡	Ľ	VH	Ħţ
.o~~~o.	DD-70 1,7-bis(4-Hydroxyphenylthio)-3,5- dioxaheptane	93589-69-6	L	М	L	М	M	М	M [₿]	M⁵		₽ [§]	M	H	H	H	L
-042P40~	Pergafast 201 N-(p-Toluenesulfonyl)-N'-(3-p- toluenesulfonyloxyphenyl)urea	232938-43-1	L	М	L	М	H	L	М	L		L	VL	H	н	VH	L
o ^{zioraiz} a	BTUM 4,4'-bis(N-carbamoyl-4- methylbenzenesulfomide)diphenylme thane	151882-81-4	L	м	L	L	L	L	м	L		L	L	н	н	Н	L
11	UU Urea Urethane Compound	321860-75-7	L	м	L	L	L	L	L	L		L	L	L	L°	VH	L

Example of Hazard Profile

FINAL REPORT - January 2014

Bisphenol S

	CASRN: 80-09-1							
	СН	MW: 250.27						
		MF : $C_{12}H_{10}O_4S$						
_ 0 _		Physical Forms:						
		Neat: Solid						
		Use: Developer for thermal paper						
SMILES: O=S(=O)(c1ccc(O)cc1)c2ccc(O)cc2		•						
Synonyms: Phenol, 4,4'-sulfonylbis-; bis(4-hydroxyphenyl)sulfone; 1,1'-S	Sulfonylbis(4-hydroxybenzene); 2,4'-Sulfonyldiphe	nol; 4,4'-Bisphenol S; 4,4'-						
Dihydroxydiphenyl sulfone; 4,4'-Sulfonylbisphenol; 4,4'-Sulfonyldiphenol	4-Hydroxyphenyl sulfone; Bis(4-hydroxyphenyl)) sulfone; Bis(p-hydroxyphenyl) sulfone;						
Diphone C; p,p'-Dihydroxydiphenyl sulfone								
Polymeric: No								
Oligomers: Not applicable								
Metabolites, Degradates and Transformation Products: None								
Analog: None	Analog Structure: Not applicable							
Endpoint(s) using analog values: Not applicable								
Structural Alerts: Phenols, neurotoxicity (U.S. EPA, 2010)								
Risk Phrases: Not classified by Annex VI Regulation (EC) No 1272/2008 (ESIS, 2011).								
Risk Assessments: None identified								

Full report available here:

http://www2.epa.gov/saferchoice/publications-bpa-alternatives-thermal-paper-partnership

Example of Hazard Profile

FINAL REPORT - January 2014

		Bisphenol S CASRN 80-	-09-1					
PROPE	RTY/ENDPOINT	DATA	REFERENCE	DATA QUALITY				
		Not highly flammable EU Method A.10 (Measured)	ECHA, 2011					
Explosivity				No data located.				
pН				No data located.				
pKa		8 OECD Method 112 (Measured)	ECHA, 2011	Adequate, guideline study.				
		HUMAN HEALTH EFF	ECTS					
Toxicokinetics		No toxicokinetic data located.						
Dermal Absorption	in vitro			No data located.				
Absorption, Distribution, Metabolism & Excretion	Oral, Dermal or Inhaled			No data located.				
Acute Maminalian	lo	cow: The weight of evidence indicates oral LD_{50} of 1,600 mg/kg for the mouse Located data suggest a low hazard conc acute inhalation hazard.	s that the acute or at toxicity of bis could not be verified because no s ern for acute dermal exposure. N	spinenoi S is iow. A reported acute study details were available. To data were located regarding the				
Acute Lethality	Oral	Rat oral LD‰ ≥5,000 mg/kg	ECHA, 2011	Adequate guideline study (OECD 401); no deaths at limit dose of 5,000 mg/kg.				
		Wistar rat (male) LD ₅₀ = 2,830 mg/kg	ECHA, 2011	Adequate guideline comparable to OECD guideline 401; the LD ₅₀ value supports other reported results.				
		Rat oral LD ₃₀ = 4,556 mg/kg	BIOFAX Industrial Bio-Test Laboratories, Inc., 1974, cited in CHEMID	Although no study details were provided in the secondary source, the LD ₃₀ value supports other reported results.				
		Rat (male, female; strain unspecified) $LD_{50} = 2,540 \text{ mg/kg}$ (females) $LD_{50} = >3,200 \text{ mg/kg}$ (males)	Eastman Kodak, 1991	Although study details were lacking in the study summary, the LD ₅₀ value supports other reported results.				

Full report available here:

http://www2.epa.gov/saferchoice/publications-bpa-alternatives-thermal-paper-partnership

Trends and Observations

- Most chemicals suggested for inclusion were structurally similar to BPA or BPS.
- Many chemicals had significant data gaps.
- Can be difficult to compare chemicals that exhibit different toxic effects (apples and oranges).

Office of Pollution Prevention and Toxics

- Hazard trade-offs are common among alternatives.
- Other options to consider include:
 - Redesign of thermal paper,
 - Different type of printer and
 - E-receipts.

Limitations of Existing Hazard Criteria

- Criteria can be used to compare chemical hazards, but
 - Testing is expensive cost, time, use of animals,
 - Computer models are unavailable for most human health endpoints,
 - Existing test methods are limited aid to chemical design and
 - Data can be difficult to interpret.
- Emerging concerns (e.g., endocrine disruption, wildlife)
 - Most chemicals lack data for these endpoints and
 - Absence of consensus on hazard ranking.
- Strategies to systematically integrate broader range of considerations and trade-offs continue to evolve.

DfE and Safer Choice:

http://www2.epa.gov/saferchoicefacebook.com

Cal Baier-Anderson <u>baier-anderson.caroline@epa.gov</u>

Office of Pollution Prevention and Toxics