Developing a Toxicological Framework for the Prioritization of the Children's Safe Product Act Data

Marissa Smith Department of Environmental and Occupational Health Sciences, University of Washington May 18 2016 IC2 Meeting

Joshua Grice- Washington State Department of Ecology Alison Cullen- Evans School of Public Policy and Governance, University of Washington Elaine Faustman-Department of Environmental and Occupational Health Sciences, University of Washington

Presentation Focus

International Journal of Environmental Research and Public Health

Article

A Toxicological Framework for the Prioritization of Children's Safe Product Act Data

Marissa N. Smith¹, Joshua Grice², Alison Cullen³ and Elaine M. Faustman^{1,*}

- ¹ Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communications, University of Washington, Seattle, WA 98105, USA; rissa8@u.washington.edu
- ² Washington State Department of Ecology, Olympia, WA 98504, USA; joshua.grice@gmail.com
- ³ Evans School of Public Policy and Governance, University of Washington, Seattle, WA 98195, USA; alison@u.washington.edu
- Correspondence: faustman@u.washington.edu; Tel.: +1-206-685-2269

Academic Editors: Helena Solo-Gabriele and Alesia Ferguson Received: 1 February 2016; Accepted: 12 April 2016; Published: 19 April 2016

Children's Safe Product Act (CSPA)

- CSPA was passed in 2008 in Washington State
- CSPA requires that manufacturers report the presence of 66 Chemicals of High Concern to Children in children's products sold in WA state
 - Target age group (under age three, age three and above)
 - Chemical Function
 - Product Category
 - Concentration Range

Chemical concentration range

Range 1: < 100 ppm and >= PQL

Range 2: < 500 ppm and >= 100 ppm

Range 3: < 1000 ppm and >= 500 ppm

Range 4: < 5000 ppm and >= 1000 ppm

Range 5: < 10,000 ppm and >= 5000 ppm

Range 6: >= 10000 ppm

Chemicals of High Concern to Children (CHCC)

Example Chemicals of High Concern to Children

Formaldehyde	Molybdenum & molybdenum compounds	Di-2-ethylhexyl phthalate	Phthalic Anhydride
Methyl ethyl ketone	Antimony & Antimony compounds	Di-n-octyl phthalate (DnOP)	Butyl Benzyl phthalate (BBP)
Methyl paraben	Octamethylcyclotetrasiloxane	Diethyl phthalate	Diisodecyl phthalate (DIDP)
Propyl paraben	Cobalt & cobalt compounds	Dibutyl phthalate	Diisononyl phthalate (DINP)
Ethyl paraben	Styrene	Ethylene glycol	Di-n-Hexyl Phthalate
Butyl paraben		Ethylene glycol monoethyl ester	

What Matters in Prioritizing CSPA Chemicals?

How to we integrate this information?

- At the time of this work, CSPA had generated over 33K records
- We developed a framework that mathematically combine variables about the product and chemical in each CSPA report
- Three scores can be calculated:
 - Exposure score
 - Toxicity score
 - Total priority index

Exposure Score Variables

- Each variable was assigned a score between 1 and 3 with three indicating a higher priority
- Variables included:

Lifestage Concentration Applied Directly to Skin Exposure Duration Exposure Routes Absorption LogP Solubility Vapor Pressure

CSPA

Variable Scoring From CSPA-Product Features

Lifestage: Age three and above=1, under age three=3

Concentration: From 0.5-3 based on the 6 ranges presented earlier

Exposure Duration: Short-term=1, long-term=2

Applied directly to skin or body: Yes=3, no=1

Exposure Score Variables

- Each variable was assigned a score between 1 and 3 with three indicating a higher priority
- Variables included:
 - Lifestage Concentration Accessibility Exposure Duration Exposure Routes Absorption

LogP Solubility Vapor Pressure

Variable Scoring: Exposure Routes

Based on the Product Segment or Brick level

Exposure Routes: Oral, Dermal and Inhalation routes were assigned primary, secondary and tertiary routes.

- For example: a plastic cup would have a primary oral exposure route, secondary dermal and tertiary inhalation
- The tertiary inhalation includes potential exposure from house dust, as consumer products disintegrate
- For children under 3, a secondary oral exposure route was assigned for all products

Variable Scoring

- Each variable was assigned a score between 1 and 3 with three indicating a higher priority
- Variables included:
 - Lifestage Concentration Accessibility Exposure Duration Exposure Routes Absorption

Dermal Permeability Solubility Vapor Pressure

Exposure Score Factors From Table 1

Variable	Equation	Score			 D
	Abbrev.	1	2	3	— Basis
Oral exposure	O _{MF}	Tertiary	Secondary	Primary	Product segment (primary), Target age (secondary) [15]
Water solubility (moles/L)	S	<0.001	0.001–0.01	>0.1	Soluble (3), moderatel soluble (2), insoluble (1) [16]
Oral absorption	Abs _{oral}	1%-5%	Absorbed at unknown rate	Above 5%	Absorption rate through oral exposure (ATSDR) [17]
Dermal exposure	D _{MF}	Tertiary	Secondary	Primary	As reported product segment (primary) [15]
Dermal permeability constant	K _p	$<3.39 \times 10^{-3}$	$3.4 \times 10^{-3} - 6.67 \times 10^{-3}$	>6.7 × 10 ⁻³	Based on the tertiles of the Kp [18,19]
Dermal exposure absorption	Abs _{dermal}	1%-5%	Absorbed at unknown rate	Above 5%	Absorption rate through dermal exposure (ATSDR) [17]
Inhalation exposure	I _{MF}	Tertiary	Secondary	Primary	As reported product segment [15]
Vapor Pressure mmHg at 25 degrees °C	VP	<0.075 mmHg	0.075–32mmHg	> 32 mmHg	VP ranges for volatile compounds (3), semi- volatile compounds (2) and nonvolatile compounds (1)
Inhalation exposure absorption	Absinhalation	1%-5%	Absorbed at unknown rate	Above 5%	Absorption rate through inhalation exposure (ATSDR) [17]

Exposure Score

From CSPA

(Lifestage+Exposure Duration+Applied to Skin+ Concentration)+

Is Oral a Primary, Secondary or Tertiary Exposure Route?

Is Inhalation a Primary, Secondary or Tertiary Exposure Route?

Is Dermal a Primary, Secondary or Tertiary Exposure Route? [(Oral Exposure Modifying Factor (Water Solubility+ Oral Absorption)/2) +

(Inhalation Exposure Modifying Factor (Vapor Pressure + Inhalation Absorption)/2) +

(Dermal Exposure Modifying Factor (Dermal Permeability + Dermal Absorption)/2]

= Exposure Score

Toxicity Score Factors From Table 1

Variable	Equation Abbrev.	Score			р '
		1	2	3	Basis
Reproductive and developmental toxicity certainty #	RD _{certainty}	Potential RD ^	Suspected RD ^	Known RD	ECHA Existing Substances [20], Prop 65 [21], Global Harmonization Standard [22]
Reproductive and developmental potency	RD _{potency}	NOAEL > 397 mg/kg	NOAEL 200–297 mg/kg	NOAEL < 200 mg/kg	NOAEL from ECHA Existing Substances [20]
Carcinogenicity certainty#	Ccertianty	Potential Carcinogen ^	Suspected Carcinogen^	Known Carcinogen ^	IARC [23], Prop 65 [21], Global Harmonization Standard [22], EPA IRIS [24]
Carcinogenicity potency	C _{potency}	TD50 > 465 mg/kg	TD50 from 233 to 465 mg/kg	TD50 < 233 mg/kg	Dose that causes a tumor in 50% of the study population (TD50) from the Carcinogenic Potency Database [25,26]
Endocrine disruption certainty #	ED _{certianty}	Potential ED ^	Suspected ED ^	Known ED	ECHA Endocrine Disruptor Substances of Concern [27], Global Harmonization Standard [22]
Endocrine disruptor potency	ED _{potency}	NOAEL > 336 mg/kg	NOAEL 336–667 mg/kg	NOAEL < 667mg/kg	LOAEL from ECHA Endocrine Disruptor Substances of Concern [27]
Neurotoxicity certainty #	NT _{certainty}			Known NT	Grandjean and Landrigan <i>et al</i> . (2014) [28] , Global Harmonization Standard [22]
Neurotoxicity potency	NT _{potency}		All NTs		All known neurotoxicants are assigned a score of 2

Smith et al. 2016. IJERPH. 13(4)

Integration of Scores

Endocrine Disruption Score= *Certainty*Potency*

Sum to create the toxicity score

Reproductive and Developmental Toxicity Score= Certainty*Potency

> *Carcinogenesis Score* = *Certainty*Potency*

Neurotoxicity Score = *Certainty*Potency*

Total Priority Index = Exposure Score*Toxicity Score

Interpretation of Results

- The scoring results are designed to interpret the CSPA data relative to itself.
- Higher scoring products are a greater concern
- However, when no health outcome data is present records the total priority score is 0 points.
 - Molybdenum, some phthalates, and some parabens These chemicals require more information before they can be fully prioritized, as of now, however the exposure score can be used to look at the potential for high exposures in children.

High Priority Chemicals

• Formaldehyde, Styrene and dibutyl phthalate have the highest total priority scores and are also found in the upper right hand corner

High Priority Chemicals

Chemicals that cluster together share toxicities.

- Organic solvents such as methyl ethyl ketone and ethylene glycol, cluster with other known neurotoxicants, such as styrene
- Phthalates that are wellcharacterized endocrine disruptors and reproductive and developmental toxicants cluster together as well.

Comparison with other prioritization frameworks

- Butyl paraben scores relatively high using both the CSPA endocrine disruptor score and the ToxPi score.
- DEHP and DBP score higher using the CSPA framework than using ToxPi
- Octamethylcyclotetrasiloxane and propyl paraben, score relatively high using ToxPi but are not classified as endocrine disruptors using the CSPA framework
- Octamethylcyclotetrasiloxane has a relatively high ExpoCast predictions and score higher using the CSPA framework for average exposure scores.
- The phthalates DINP and DEHP, have higher exposure predictions from ExpoCast than exposure scores using the CSPA framework.

Smith et al. 2016. IJERPH. 13(4)

Applications

- Overall, this framework allows for the ranking of chemicals in products that may be hazardous to children's health.
- Integrates information from chemical and product features
- Can be used in conjunction with other prioritization frameworks (e.g. ToxCast, ExpoCast)
- Allows for the identification of concerning chemicalproduct combinations with strong supporting evidence of toxicity and those with high exposure potential, but less well-characterized health outcomes

Caveats and Future Work

- Framework is dependent on extant data from
 - In some cases, existing data was limited
- CSPA is still in a phase-in process with the largest manufacturers reporting their results, but requirements for smaller manufacturers are still being phased in
- Achieve a balance between high throughput and high content for framework and interpretation
 - As of January, 2016, there were over 33,000 records in the CSPA database

Acknowledgements

- Joshua Grice and the Water 2 Resources Team at Department of Ecology
- Elaine Faustman
- Alison Cullen
- Institute for Risk Analysis and Risk Communication