The Product Improvement Process as a Driver for Green Chemistry Innovation

Washington State Department of Ecology (DoE) TAAG Industry Alternatives Assessment Webinar Series

Carl D'Ruiz, MPH
North America R&D - Regulatory Affairs
Henkel Consumer Goods Inc.
11 April 2012

Contents

- 1. Background: Henkel Approach to Green Chemistry
- 2. Product Innovation or Improvement Process
- 3. Safety Plays an Integral Part of the Process
- 4. Illustration of Typical Process & Steps
- 5. Conclusion & Comments

Background: Henkel Sustainability Focal Areas

Green Chemistry & Product Improvement Process (PIP) Imbedded in Corp. Vision & Values

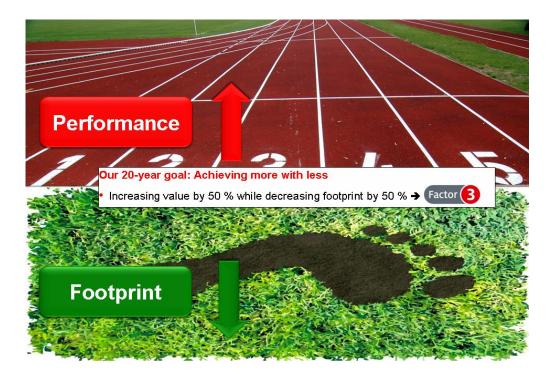
Background: Henkel Sustainability Strategy

A Holistic Approach

People, Planet, Profit

→ Triple Bottle Line

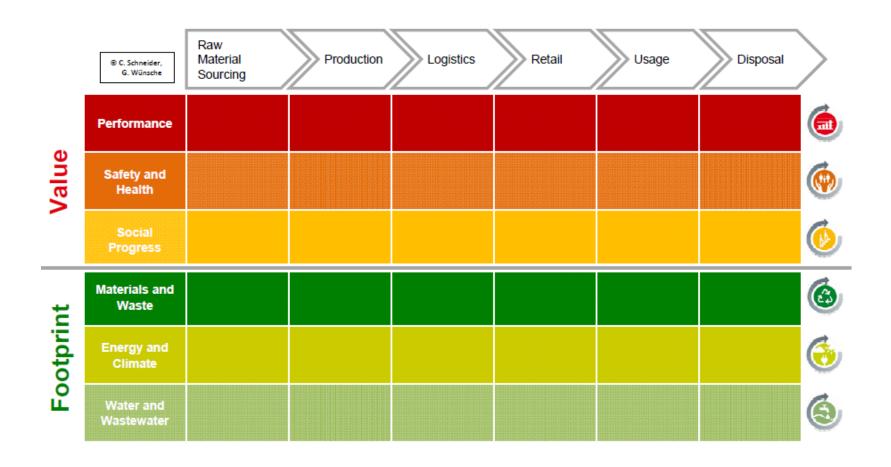
Sustainability along the Value Chain



= Holistic approach

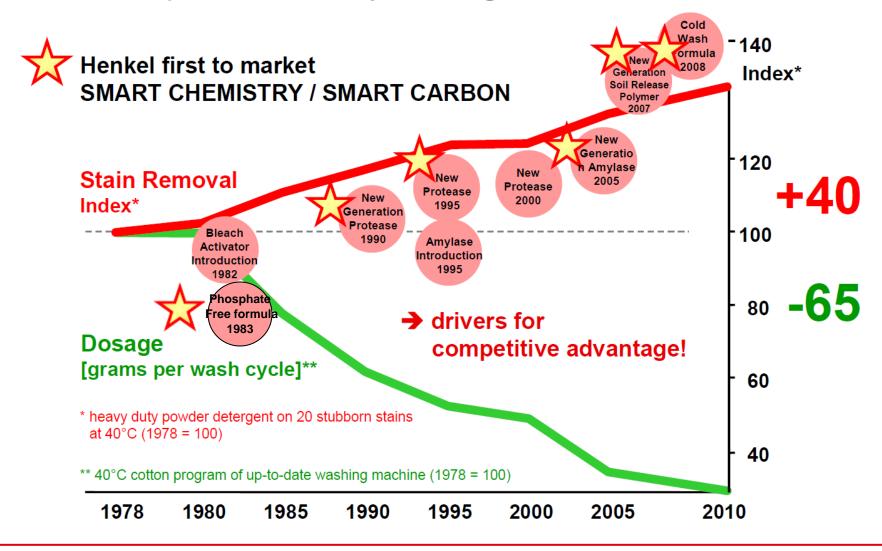
Background: Henkel Promotes More Sustainable Consumption

 Henkel is calling for collective actions to boost the sustainability of our business activities by a factor of 3 for 2030*

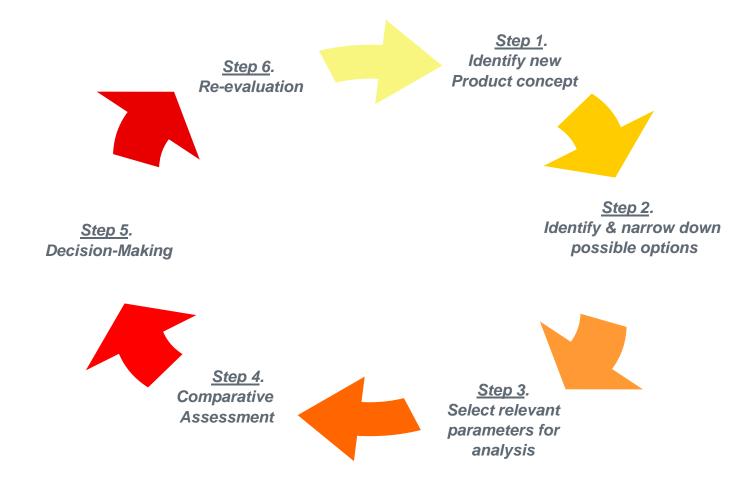


^{*} Henkel Chairman Kasper Rorsted's presentation in Montreux to detergent industry (October 6, 2010) http://www.henkel.com/com/content_data/193659_Rorsted_Montreux_20101006g.pdf

Sustainable Consumption Index


Holistic approach → The matrix

More with Less - Sustainability Innovation History


The Example of Laundry Detergents

Product Innovation and Improvement Process

All about continuous improvement!

Elements Typically Evaluated During Product Innovation or Improvement Process

Cut Across all Product Lifecycle Stages

TYPICAL EVALUATION CRITERIA

1. Safety (Human and Environmental)

- Public Health Impacts, incl. sensitive subpopulations
- Environmental Impacts
- Water quality impacts
- Air emissions
- Green house gas (CHG) emissions
- Waste/End-of-Life Disposal

2. Performance and Cost

- Product function/performance
- Useful Life
- Economic impact

3. Lifecycle/Resource Utilization

- Material/Resource Consumption
- Water conservation
- Energy inputs (Production, In-use, and transportation)
- Energy efficiency

4. Additional Considerations

- Integration of smart chemistry & sustainable consumption
- Availability/sourcing
- Manufacturing capability
- Regulatory compliance
- Claims substantiation
- Consumer acceptance

Step 1 - Green Chemistry Innovation is Driven by the Matrix

Example: Henkel laundry detergent innovation efforts throughout a product life cycle toward more sustainable consumption (value up & footprint down).

	Ø C. Schneider, G. Würsche	Raw Material Sourcing	Production	Logistics	Retail	Usage	Disposal	\rangle
Value	Performance		Concentrated Formulation		Affordability	Convenient Multi-Task Performance	Reduce Potential Env. Impacts	
	Safety and Health	Safe / Meet EPA DfE Criteria			EPA DfE Label Designation	Sensitive pop. safe		
	Social Progress			Smaller & Lightweight Packaging	Shelf Ready Packaging	Lower energy / water costs in use phase	Disposal Convenience	
Footprint	Materials and Waste	Renewable Ingredients (%)	Recyclable Packaging used (%)	Packaging efficiency			Recycled Packaging Content (%)	(3)
	Energy and Climate			Less transportation fuel		Lower temperature / GHG in use phase		(
	Water and Wastewater	> 90% naturally- sourced ingredients	Less water in product and production				Biodegradable ingredients	

Safety Assurance is Integral part of Product Life Cycle During innovation, existing use & product improvement evaluation

Safety Review of Ingredients and Formulas Typically Occurs Several Times During a Product Life Cycle

- New raw materials
- Prototype formulations
- Clinical safety evaluations
- Consumer use tests
- Market Introduction
- Post-Market Surveillance
- Reformulation

11 April 2012

Step 2 – Typical Screening Process for Raw Materials & Possible Product Improvement Assessments

All Product Raw
Materials

Safety/Regulatory
Review & Approval

RAW MATERIAL DATA

- General Information
- Sourcing Information
- Chemical Composition
- Impurities
- Intellectual Property Data (e.g., patents)
- Microbiological Specification
- Ecological Toxicity Information
- Human Toxicology Data
- Listing on Global Chemical Inventories
- MSDS/Product Data Sheets
- Storage Requirements
- Other

Raw Material Risk Assessments

• Establish acceptable use or exposure limits

Step 3 – Aspirations & Parameters for Green Chemistry Innovation General Metrics for "Green" Chemistry in Home and Personal Care Products

- Higher levels of sustainable, easily renewable resources
- Use of ecological-friendly chemicals
- Better Safety and Toxicity Profiles

Step 3 (cont.) – Examples of More Specific Elements and Parameters Targeted During Product Innovation or Improvement Process

Example: Development of Home & Personal Care Products with Bio-Preferred Surfactants and/or Naturally Sourced Ingredients

- Derived from "renewable" feedstock sources
- Does not represent a human health risk under use conditions
- Undergoes rapid & extensive biodegradation
- Acceptable level of aquatic toxicity
- Does not accumulate in any environmental compartment
- Complies with pertinent regulations and readily available in desired quantities
- Acceptable formulation compatibility/performance/cost
- Acceptable from consumer and claims perspective
- Other (e.g., recycled package content, more concentrated, smaller package, etc.)

11 April 2012

Step 3 (Cont.) – Additional Elements and Parameters Targeted For select products designated as EPA DfE

Meets DfE Criteria for Direct Release Surfactant Product

	Acute Aquatic Toxicity Value (L/E/IC50) ¹	Persistence (Measured in terms of rate of biodegradation)	Status
1	≤10 ppm		Not acceptable
2	>10 ppm and <100 ppm	Biodegradation occurs within a 10- day window without products of concern ³	Acceptable
3	≥100 ppm	Biodegradation occurs within 28 days without products of concern	Acceptable

Source: DfE's Standard and Criteria for Safer Chemical Ingredients http://www.epa.gov/dfe/pubs/projects/gfcp/index.htm#Toxicity

Step 4 – Generic Comparative Assessment

Factors Considered in Screening & Comparative Assessment of Potential Candidates

Universe of Possible
Bio Surfactants & Naturally
Sourced Ingredients

SAFETY ASSESSMENT

- Human Toxicity
 - Acute (LC₅₀): oral, dermal, inhalation, sensitization
 - Chronic (NOEL): mutagenicity, reproductive, developmental, or carcinogenicity
- Aquatic Toxicity
 - Acute (vertebrate/invertebrate)
 - Chronic
- Biodegradability
 - · Readily biodegradable
 - Low bioconcentration potential

FACTORS CONSIDERED IN COMPARATIVE ASSESSMENT OF POTENTIAL CANDIDATES

- Derived from "renewable" feedstock sources?
- Meets EPA DfE criteria (selected products)?
- Compatible with formula and targeted end-use?
- Readily available and complies with pertinent regulations?
- Patents?
- Acceptable cost?

Step 5 – Decision-Making Example of Acceptance Process

- •Meets all selection criteria in sustainability matrix?
- Does not represent a health risk under use conditions?
- Undergoes rapid & extensive biodegradation
- Derived from "renewable" feedstock sources?
- Has attributes that are important for product
- •Meets EPA DfE requirements?

FINAL EVALUATION & SELECTION

- Incorporate into test formulations
- Test formulations for performance
- Test formulations for human & environmental safety
- Confirm consumer acceptance
- Substantiate claims

Green Chemistry Innovation Accomplishments Examples

Home & Personal Care Green Chemistry Product Accomplishments

Home care and laundry products:

- Bio-based surfactants & naturally sourced ingredients
- Biodegradable
- Packaging with less plastics and recycled plastics
- Concentrated products with less water
- Less transportation saving fuel and GHG emission
- Cold water laundry detergent saving energy in consumer home use

Personal care products:

- Cold process formulations saving energy in production
- Naturally sourced ingredients, hypoallergenic and gentle to skin
- Novel product design saving water in consumer home use

Products with EPA "Design for Environment" (DfE) designation

Eco-innovation Towards Greener Chemical Ingredients Examples: Continuous Improvements for Greener Surfactants

Surfactants based on Improved Sustainability Profile (√aquatic metabolic design (e.g., algae photosynthesis?) toxicity, ↑degradation, ↑renewable Fermentationbased Synthetic, **Sophorolipids** Synthetic, bio-based bio-based Alkyl Polyglycoside feedstock source) non-lonic **Surfactants** Linear Synthetic, **Alcohol** petro-based **Ethoxyaltes** O-CH-(CH₂)₁₅COOH Nonviphenol **Ethoxylates** (NPE)

Future

Past

Eco-innovation Towards Greener Chemical Ingredients (Cont')

Example: Effective chemical safety evaluation under HERA risk assessment program based on industry voluntary measures

KPI	REPORTING DATA	2005	2006	2007	2008	2009	2010
Chemicals safety evaluation	% of ingredients covered by HERA° (I&I not included)	64.3 %	68.6 %	72.9%	75.7%	74.7%	75.5%

Participating companies

Companies reporting (number of)	8	19	33	45	59	65
Manufacturing sites covered	62	78	108	133	152	162
% vs Total	81.6%	78.8%	84.4%	88.7%	89.9%	92.6%
Production covered	7.3 m t	9.3 m t	10.5 m t	11.1 m t	11.1 m t	11.6 m t
% vs Total	86.2 %	86.1 %	92.1%	94.7%	95.7%	97.8%
Units of consumer products sold (I&I not included)	5,800 m	8,200 m	9,300 m	9,700 m	10,200 m	10,300 m

11 April 2012

^{*} A digest from AISE Activity and Sustainability Report 2010-2011: http://www.aise.eu/downloads/AISE-AR-SR%202010-2011_web-version.pdf

Conclusion & Comments

- Utilization of the Product Improvement Process -
 - ✓ Successfully drives green chemistry & sustainability innovation
 - ✓ Incorporates the product safety, performance and lifecycle evaluation elements common in AAs
 - Recognizes trade-offs
- Addition of onerous regulatory elements to the process can result in unintended consequences such as -
 - ✓ Increases in time & resources for new product development
 - ✓ Loss of confidential business information & trade secrets
 - Creation of a non-leveled playing field in the global marketplace

11 April 2012

Thank you!

ADDITIONAL SLIDES

Henkel Product Improvement & Green Chemistry Innovation - C. D'Ruiz

EPA DfE Program - Basic Components

- Promote green chemistry
- Understand toxicity
- Life cycle thinking

Continuum of Improvement

Formula Ingredient by Functional Class

